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Abstract

The workshop at the Banff International Research Station, 10w5068,

on “Statistical Issues Relevant to Significance of Discovery Claims”, raised

several interesting issues that are best illustrated with concrete examples

that participants can try out and discuss the issues that arise. This doc-

ument provides instructions for trying out two such examples, which are

meant to simulate the task of discovering new particle or phenomena in

high-energy physics experiments.

1 Introduction

The Banff discovery challenge is designed to follow on to BIRS Workshop
10w5068, in which several interesting issues arose relating to discovery claims.
Among these are the incorporation of uncertainty in the values of nuisance
parameters, the utility of 3σ and 5σ significance requirements in HEP, compu-
tational difficulties raised by these stringent significance requirements, and tools
for shortening the calculations. Also important is the the “Look-Elsewhere Ef-
fect”, also known as the effect of multiple testing, or the “trials factor”, which
arises because the test hypothesis is not a simple hypothesis but includes extra
parameters not present in the null hypothesis. We would like to put some of
these ideas and questions to the test with examples that are realistic enough to
capture the important parts of the statistical procedures for claiming evidence
or discovery, while at the same time reducing the programming and compu-
tational requirements for full participation. We do realize that we would like
to encourage participants to propose computationally efficient solutions to very
challenging problems, but at the same time we would like to broaden the par-
ticipant pool as much as possible, hence the structure of the problems and the
requirements.

In a high-energy physics collider experiment, counter-rotating beams of par-
ticles are focused to a common collision area. Many different things can happen
when particles collide. Usually several processes are involved in the collisions,
most of which are known and well studied, and hence are not interesting, while
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others are yet to be discovered (and which may or may not exist). Each colli-
sion which causes the detector electronics to decide to read out the detector is
called an “event”. Events may be caused by well studied and known processes,
and are called “background” events. Events may also be caused by processes
that have yet to be discovered. Physicists seek to collect samples of interesting
events that can be used to convince others of the presence of new processes, so
that they can claim discovery. Usually a physicist has some specific idea of a
speculative, unconfirmed, new process that has a chance of being present in his
data. Events that are caused by this process are called “signal” events. Usually
physicists seek one kind of signal process at a time, although the true compo-
sition of the data events is unknown, and more than one kind of signal process
may contribute to the data, in addition to those considered as backgrounds.
We will keep the discovery challenge problems simple and only test the cases in
which background processes and at most one signal process may be present.

We cast the problems as hypothesis tests. The null hypothesis (H0) consists
of the claim that the data consist only of background events. The test hy-
pothesis (H1) consists of the claim that not only are the background processes
contributing, but also a signal component is present. The kind of signal sought
is ideally specified before the data are collected and analyzed, and this will be
the case here.

The detectors used in experimental particle physics are large and complex.
They measure multiple properties of each event, such as the number of parti-
cles produced, their energies, their directions, and their particle type (energetic
pions, electrons, photons, muons, protons, and many more exotic kinds of par-
ticles are produced regularly in these events). An example picture of an event is
shown in Figure 1. In this picture, computer reconstructions of the paths left by
the particles as they travel away from the collision in the center of the detector
are shown. Energy deposited in the calorimeters isn’t shown in the particular
event display, but electrical signals in the outer muon detectors are. A great
many properties are measured for each event.

These measured properties can be used to differentiate signal events (if they
exist) from background events, usually very imperfectly. Particle physicists
usually distill the measured properties of the events into one or two numbers
(one in our case) that has an optimal separation of the distributions of signal
and background events. Often neural networks, decision trees, and other kinds
of dimension-reducing techniques are used to produce a single quantity as a
function of the many measurements made on each event. The events are assumed
to be Poisson distributed when counted, and this is true for any subset of the
data that are collected based on fixed requirements used to select the subsets.
The single number measured on each event is a mark in a marked Poisson
process.

Background events are usually produced much more copiously than signal
events. The differences in the distributions of the mark for the background
component(s) and the proposed signal component, as well as a priori knowledge
of the background rates (which may be poor), are used to make the claim of
evidence for the signal component.
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Two challenge problems are posed below. The main difference between the
two problems is that the first one proposes models for the probability density
of the marks for the signal and the background events that are simple, analytic
functions. The second problem proposes models of signal and background dis-
tributions that are estimated using a Monte Carlo program. This latter case
is more typical in experimental particle physics, as the predictions of the ex-
pected rates of signal and background events as functions of the mark involve
integrals over positions, particle energies, sums over particle counts, and other
quantities. These integrals are most easily evaluated with Monte Carlo pro-
grams which produce simulated events that are meant to mimic the data under
H0 and H1. Particle physicists are often skeptical of whether their Monte Carlo
programs are making unbiased predictions, and assign uncertainties to these
predictions accordingly. The two hypotheses are compound hypotheses – they
depend on the values of uncertain nuisance parameters.

2 Banff Discovery Challenge Problems

Both problems below provide specifications for H0 and H1 by defining the ex-
pected signal and background probability density functions of the marks and
the expected prediction of the total numbers of events with uncertainties. Each
problem’s data also include a set of simulated data outcomes. These are lists
of the marks for each event for each experimental outcome. A total of 20,000
simulated experimental outcomes (also called “datasets”) is provided for each
problem.

Some of the datasets will be generated from H0, and others will be gener-
ated from H1. Some of the datasets containing signals will be generated with
multiples of the signal rate other than the standard ones specified below. In a
real experiment, only one dataset is produced by the experimental apparatus,
and it must be analyzed by itself with the help of the prior model information,
which comes from subsidiary measurements and the work of theorists. Chal-

lengees should not use any property of any simulated dataset to help

interpret any other simulated dataset. As the simulated datsets are drawn
from different parent distributions, it would be risky anyhow to do this.

For the two problems described below, the challengee should provide the
following

• For each of the problems, the power of the test for claiming evidence
should be reported (physicists call this the “sensitivity”). The power is
expressed as how often the challengee would claim evidence if a signal were
truly present at the rate specified in the problem statement, using their
technique adjusted such that the Type-I error rate is no more than 0.01.

• A description of the method used so that a document can be prepared
describing each submission and its performance on the challenge prob-
lems. The description should be detailed enough so that the method can
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be reproduced. Please describe any differences in the method used to ad-
dress the two problems. If the extra credit intervals are computed, please
provide a description for how these are obtained as well.

For the two problems described below, the challengee should do the following
for each simulated dataset:

• A yes-no decision is to be made as to whether or not to claim that there is
evidence in that dataset of the signal proposed in H1. The desired Type-I
error rate is 0.01. That is, no more than 1% of datasets provided that
were generated using only H0 should be flagged as having evidence for the
signal process.

• One of the following should be provided:

– The P-value for H0, or

– The Bayes Factor, or

– Some other quantity used to make the decision that can be described
to the judges

• For problem 1, the challengees should compute for each simulated dataset
for which they claim evidence, the location of the peak found (see the
problem description below), and a 68% interval for the peak position of
the signal found.

• Extra Credit: The challengees should compute 68% [confidence or credi-
bility] intervals for the signal rate for each simulated dataset.

2.1 Problem 1: A Gaussian Signal Peak on an Exponential

Background

For this problem, the simulated data samples are drawn from the following
density functions1. The background density function is

B(x) = Ae−Cx (1)

where x is the mark of the event2. We will restrict the domain of x to be
between 0 and 1. We choose the values A = 10000 ± 1000 and C = 10.0 ± 0.
The background rate parameter A is drawn from a truncated Gaussian prior of
width 1000, and truncated so that A ≥ 0.

The signal density function is

S(x) = De−(x−E)2/2σ2

(2)

1As these functions are not normalized to unit area, a better phrase is “intensity functions”,

but “intensity” means something else to a physicist.
2Physicists may want a concrete example – the dijet invariant mass of an event in a Higgs

boson search is a typical choice for x, although neural network outputs are much more common

these days.
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We specify that D ≥ 0, and that σ = 0.03, in our generation of simulated
datasets. All signals in the simulated datasets have 0 < E < 1. We call E

the peak position, and we ask that challengees provide their best estimates
of E for each dataset for which evidence is claimed, plus a 68% CL interval
containing their best estimate. In computing intervals for D and E, you should
take the above specifications as boundaries of the “physical region”, that is,
it is impossible to have a negative signal contribution, and the peak position
range may be limited by another experiment’s limit or perhaps a theoretical
argument.

Because E can take any value in the range described above, the effect of
multiple testing (the “Look Elsewhere Effect”) is part of what we want the
challengee to address in their decisions of whether to claim evidence for a signal
or not.

For the power (“sensitivity”) calculations, we would like challengees to spec-
ify the fraction of the time they estimate their technique would produce an
evidence claim for a signal for three cases. These cases are given by (D, E) =
(1010.0, 0.1); (137.0, 0.5); and (18.0, 0.9).

Each simulated dataset will be numbered. Please provide your decision
results in an ASCII file with these columns:

• Dataset Number

• Decision to claim evidence for H1 over H0. 1 means evidence is claimed,
0 means no evidence.

• The P-value (or Bayes Factor, or your choice of variable)

• Best estimate of E if evidence is claimed, or zero if not claimed

• Low edge of the 68% CL region of E if evidence is claimed, or zero if not
claimed

• Upper edge of the 68% CL region of E if evidence is claimed, or zero if
not claimed

• Lower bound on D at 68% CL if the extra credit is attempted

• Upper bound on D at 68% CL if the extra credit is attempted

A series of simulated datasets is availale at the following location

http://www-cdf.fnal.gov/~trj/bc2prob1.dat.gz

Download it to your computer, and gunzip it to unpack the contents (the
unzipped filesize should be about 194 MB). There are 20000 randomly chosen
simulated datasets, some with simulated signals present, others without, with
different values chosen for D and E. The first line in the data file has two
integer numbers on it: the Dataset Number (from 0 to 19999) and the number
of collision events nobs for that dataset. The next nobs lines in the file are the
marks x for those events. After the marks are listed, the next simulated dataset
begins.
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2.2 Problem 2: A Monte-Carlo Parameterized Example

We pose a second exercise to simulate the challenges facing experimental particle
physicists on a routine basis. In this case, we do not provide analytic functions
for the distributions of the mark x measured on each event, but instead pro-
vide Monte Carlo parameterizations of of these distributions. Furthermore, we
choose to model a situation in which the null hypothesis H0 predicts that events
are produced with two processes, which give different distributions of x and have
different production rates, and the test hypothesis H1 further posits the exis-
tence of a third process, the “signal” process, which has yet another distribution
of x and a different production rate.

The total number of expected events is predicted from subsidiary measure-
ments and/or theoretical predictions, and we summarize this knowledge in a
set of priors. For the first background, “background 1”, the expected number
of events is 900 ± 90, where the shape of the prior is a truncated Gaussian of
width 90 events, truncated so the predicted number of background 1 events is
non-negative. For the second background, “background 2”, the predicted rate
is 100± 100 events, again where the shape of the prior is a truncated Gaussian,
this time of width 100 events, truncated so the predicted number of background
2 events is non-negative. If this information came from a subsidiary Poisson
measurement we would provide a more detailed likelihood function, but often
there are larger sources of uncertainty in extrapolating the measurement in a
subsidiary measurement to make a prediction in the selected event sample. Of-
ten, there are multiple estimates of a background such as number 2 above, which
disagree at a large level such as this. Treat the uncertainties on backgrounds 1
and 2 to be uncorrelated.

For the two background sources and the signal, we have Monte Carlo simu-
lations which provide predictions of the distributions of the mark x for the three
processes. These may be found at

http://www-cdf.fnal.gov/~trj/bc2p2bg1mc.dat.gz

http://www-cdf.fnal.gov/~trj/bc2p2bg2mc.dat.gz

http://www-cdf.fnal.gov/~trj/bc2p2sigmc.dat.gz

and contain 5000 simulated events each. There is only one kind of signal
possible, and only its total rate is uncertain (whereas Problem 1 had two sepa-
rate parameters). Simulated datasets, some containing signals at various rates,
others only drawn from H0, are provided in the same format as in Problem 1,
in the following file:

http://www-cdf.fnal.gov/~trj/bc2prob2.dat.gz

Please provide your answers to this problem in the same format as your an-
swers to Problem 1, where the power is to be computed with an expected signal
total rate of 75 events. Figure 4 shows an example simulated dataset, binned
as a histogram together with the background models, with a signal present.

6



3 Turning in Your Results

Please send your files of decisions and intervals to the judges: trj@fnal.gov

and wfisher@fnal.gov, no later than December 10 2010, in order to give the
judges time to evaluate the submissions and prepare a document for PHYSTAT
2011, which starts on January 17, 2011. If you have questions regarding the
problem statements and what is required, please don’t hesitate to contact Tom
Junk, trj@fnal.gov and Wade Fisher wfisher@fnal.gov.
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Figure 1: A display of an event collected by a high-energy collider experiment.
The colliding beams travel perpendicular to the plane of the image, one into the
page, one out of it. Tracks left by particles leaving the interacting region are
shown in the inner portion of the picture, and electronic signals in the muon
chambers (the outer straight-lined components) are also shown in pink. Energy
deposits in the calorimeter are not shown.
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Figure 2: An example of an experimental outcome for Problem 1 which has been
drawn from the test hypothesis H1 with a signal rate that is large enough to
be clearly visible above the background. The background used to generate the
experimental outcome is shown as the light-shaded area, and the signal predic-
tion is shown as the dark-shaded component stacked on top of the background.
The simulated data are shown in bins of the mark x, as points with error bars.
The size of the error bar in each bin is shown as the square root of the simulate
data contents, as is the custom in particle physics plots (but not necessarily in
analyses). The signal is chosen to be centered on E = 0.2. The left-hand plot
has a linear vertical scale while the right-hand plot is the same on a logarithmic
vertical scale.
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Figure 3: An example of a signal-like outcome for Problem 1 but for E = 0.7.
See the caption of Figure 2 for an explanation of the items in the plot. Only
the logarithmic scale plot is shown as the signal is not visible on a linear scale.
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Figure 4: An example of a signal-like outcome for Problem 2. See the caption
of Figure 2 for an explanation of the items in the plot. Two background sources
are present, as well as the signal. The predictions in each bin are shown stacked.
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